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Abstract-A model of free convection in a fluid cylinder submitted to generic boundary conditions is 
developed. The fluid is subdivided into a boundary layer region and a nucleus moving with opposite 
velocities and the equations of Fourier, continuity and Navier-Stokes in the nucleus are solved exactly in 
terms of Fourier sums. The nucleus is linked to the boundary layer to provide the unknown function which 
solves completely this problem of convection. As an example the general solution is applied to the case of 

a temperature step which is found to travel undeformed through the nucleus (asymptotic solution). 

1. INTRODUCTION 

THE GENERAL problem of free convection in a fluid 
subjected to the gravity field and to a thermal gradient 
has been approached for a long time by studying 
almost exclusively steady-state situations [ 11. 

The classical theory of an infinite hot vertical wall 
in contact with the fluid led to the formulation of the 
boundary layer region where the largest temperature 
and velocity gradients are observed. In this region the 
fluid behaviour is described by a quite complicated 
theory developed first by Prandtl [2]. 

A convenient way to study problems of convective 
linear instability is offered by thin fluid layers sub- 
mitted to vertical temperature gradients giving rise to 
the classical BLmard cells, structures which can be 
obtained by maintaining the liquid for a long period 
of time in a steady-state condition. 

A complete theoretical approach to non-linear 
instabilities and unsteady-state situations is still lack- 
ing. 

In this paper we present a theory of the unsteady 
non-linear convective nucleus which holds under very 
general boundary conditions when a particular model 
of convection is assumed to work. The basic stand- 
point is that whenever convection occurs in a fluid 
there must be a boundary layer coupled with a comp- 
lementary region called a nucleus, where the fluid 
flows with opposite velocity to counterbalance the 
mass flow in the boundary layer and give continuity 
to the system. In the gravity field the nucleus moves 
vertically collapsing into the boundary layer at the 
edges, regardless of the direction of the thermal gradi- 
ent. 

The validity of such a description is supported by 
experimental data and calculations presented in a pre- 
vious paper [3]. 

The results of the theory are given in terms of gen- 
eral equations which can be applied to real systems, 
whenever the boundary condition functions are cor- 
rectly recognized. 

2. MODEL OF CONVECTION 

The system under study is a cylinder of fluid, with 
its axis vertical, exchanging heat through its lateral 

wall. 
We assume that convection is already established 

in the cylinder : this condition, from observations of 
the convection onset in transparent cylinders traced 
with coloured solutions, is reached in less than 1 s. 

The volume of fluid is subdivided into three regions, 

as shown in Fig. 1. 

(a) Boundary layer, a layer of liquid (average thick- 
ness 6) which moves vertically along the wall and 
reverses its velocity at the edges. Its temperature is 
very close to T,, temperature of the lateral wall, 
through which heat is transferred by conduction from 
a thermostatic bath. The boundary layer acts as a 
‘convective heat source’. 

(b) Central nucleus, defined as a cylinder of liquid 
moving inside the boundary layer with opposite vel- 
ocity, independent of the radial distance from the axis 
and also independent of the level z. The temperature 
in the nucleus is constant at any point of a plane at 
level z, but is a function of z and time t. 

(c) Intermediate region which joins smoothly 
regions (a) and (b). Along the vertical boundary this 
region is a very thin layer where the velocity and 
temperature variations in the radial direction are very 
large but not infinite. No fluid exchange occurs 
through this wall. At the top and at the bottom of the 
cylinder this region allows a smooth bending of the 
velocity vector from the boundary layer to the nucleus 
and vice versa. The overall volume of the intermediate 
region is negligible when compared to regions (a) and 

(b). 

3. MATHEMATICAL TREATMENT OF THE 
MODEL 

The fundamental equations of hydrodynamics 
applied to the described model reduce to (Appendix) 
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NOMENCLATURE 

(1 convection constant, T temperature of the liquid in the nucleus 
[2RApn Gr’13 Pr- 2’3]/ To initial temperature (in the asymptotic 

~h(R--fi)2(G*(h/2))‘~‘] solution) 
A pure constant in a, independent of the Ts surface temperature 

nature of fluid u velocity 

c, constant volume heat capacity u0 scalar velocity in the boundary layct 

C,, constants of the complete basis set (p,,(z), (apart from the multiplicative function 
inn/h i), K,W ‘v Gr’yl fO.49W ‘) I,‘ 

f,, components of the strain tensor 1’ scalar velocity in the nucleus 

f’l initial temperature function defined in I:0 scalar velocity at t = t,, 
the interval [0, 61 It level in the liquid measured from the 

j-2 initial temperature function defined in bottom, II-z 
the interval [h-6, h] I’* radial coordinate measured from the 

Z(z) 
constant of gravity lateral surface of the cylinder towards 
initial temperature function defined in the axis 
the interval IS, h-S] = T(z, 0) - Ts z level in the liquid measured from the top 

G*(z) initiaf temperature function defined in z” normalized level in the liquid, nzik. 
the interval [-h, h] 

Gr Grashof number, ~gG*(h~2)h3~~~ Greek symbols 
I? level of the liquid contained in the B thermal expansion coefficient, 

cylinder (- llp(Ts))(&l~T) 
K thermal conductivity 6 average thickness of the boundary layer 

K, pure constant in u,) 6 _” Kronecker delta function 
a unit vector along the z-axis V gradient operator 

R hydrostatic pressure 0. divergency operator 
B stress tensor p coefficient of viscosity 
Pr Prandtl number, v/x V kinematic viscosity, 41,/p 
R internal radius of the cylinder P density of the liquid 
t time 4 energy dissipated by viscous forces 

to initial time X thermal di~usivity coefficient. 

t3T dT 8ZT 
(7t - yjy = x $J5- Fourier (1) 

JP _ JP 
-L’ Continuity 

c7t a2 G? 

do 

p(TsW +BWJl. (6) 
Equation (4) is a general statement about the 

This condition reduces the independent equations 
in the nucleus from three to two while there are three 
unknowns. The system becomes undetermined, but 
the third condition will be recovered when the nucleus 
and the boundary layer are interfaced through an 
appropriate continuity equation used as a subsidiary. 

We look for solutions where variables z and t are 
separated into single terms 

This approach is correct only if functiors ,f;I(i) and 
&(z) form a complerr basic set. 

We can write 

boundary temperature function G(z) at the instant t,. 
Equation (5) expresses the condition that at t = to 

the nucleus has already formed. 
Equation (6) is the straightforward linear form of 

the density at temperature T. 
In a purely convective system the term 

x($T/&?) rr 0 and equation (1) becomes indis- 
and equation (I) becomes 

tinguishable from equation (2), since p is a function 
of T like equation (6). 
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Equation (8) is satisfied if the following hold for T(z,t,) = Ts + Cf,&)A,exp(C,z) = G*(z)+Ts 

anyn: n 

(18) 

j;l(t) --v(t)f,(t) $j$ = 0 (9) which satisfies equations (1) and (2) with boundary 
condition (4) in the nucleus ; moreover, at t = 0 it 

i.e. satisfies f:‘)(z) and f$‘)(z) in the boundary layer. 

9X(z) 
Since any function defined on a finite interval can 

~ = C, 
4”(Z) 

which gives 4,,(z) = A, exp (C,,z). be written as a Fourier series we conveniently put 

Equation (9) becomes 

(10) G*(z) = f OZ, exp (innz/h) 
-m 

with I (19) 

fnw 
u(t) = C,fn(t) 

(for any n) . (11) a, = & 
s 
* G*(z) exp (-innz/h) dz. 

h J 

Since u(t) is independent of n, from equation (11) 
we must satisfy for any n and a tixed k the following 

By comparing equation (18) with equations (19) 

condition : 
we obtain 

f”(t) _ fdt) 
Gfn(t) Gfdt) 

(12) (20) 

which is equivalent to The result of equations (20) is astonishingly simple 

dfn C, d_fk 
despite the complexity of the problem. In fact we are 

-= -- 
fn G fk . 

(13) now able to calculate any fn once f, is known. 
From equations (16) and (20) 

Equation (13) upon integration gives fn(t) = f ‘t(t). (21) 

fn(t) = [fdt)PC*. (14) The resulting T(z, t) in equation (7) is 

From equations (11) and (14) with k = 1 (chosen 
at will) T(z, t) = Ts + f a, $$ exp (innz/h) (22) 

“=-CS 

n(t) = .fmKtfml = fi(t)/[c,f I(t)I (15) where f,(t) is the only unknown function. However, 

f,(t) = [f IwJC~’ (16) the velocity u(t) must be a real function : as a conse- 
quence, from equations (15) and (20) we obtain 

Equations (15) and (16) mean that in order to solve 
for 4,,(z) = A,, exp (C,z) we have to determine the set v(t) = f](t) h ~_ 
of constants C,, and A, and o&y one function f,(t). f 1 (0 ix’ 

(23) 

The constants will be determined by means of the 
boundary conditions, while .f,(t) will be obtained 

Since any complex function may be written as 

through the continuity condition. applied at the inter- 
face between the nucleus and the boundary layer (see 

f 1 (4 = B(t) exp [W>l (24) 

later). equation (23) becomes 

We determine first the constants by observing that 
in equation (7) T must converge to Ts for t + 00 vctj = 5 B(t) ev WWl + WMt) exp b+W>l c251 

because the liquid must reach the temperature of the ix B(t) exp WWI . 
bath in contact with the lateral wall of the cylinder. 
This final condition is obtained by defining a properly 
shaped function G*(z) such as (at t = to) 

The condition of reality of equation (25) implies 

d(t) = 0 or B(t) = constant = B(t,). (26) 

for -h<z<O Equation (22) becomes 

/ 

f d ‘) (z) for 
G*(z) = G(z) 

O<z<6 

for 6,<z,<h-6 
(17) T(z,t)=T,+ 2 cl, w {inW(t) 

“=-cc 
f:“(z) for h-6 < z < h 

-Wo)lI exp WM. (27) 
where f b”(z) and f L*‘(z) are functions expressing the 
(small) temperature variations in the boundary layer 

Equation (23) becomes 

region [4] and G(z) is defined by equation (4). 
At t = to equation (7), using equation (lo), becomes 

v(t) = g(t). (28) 
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---“Y-axis 

I. Model of free convection in a vertical cylinder 
(7, c T). 

By putting x(t) = t/~(t) - $(t,) equations (27) and (28) 
become 

T(z, t) LIL- Ts + 1 tin exp [inx(t)] exp (innz/h) 
,> = x 

v(t) = .qt)h/n (29) 

where 

x(r,) = 0. 

The constants CI, are given by equations (19) 

1 h 
% = 2% h s G*(z) exp (- innz/h) d=. 

If we put z* = m/h we obtain 

G*(z*) exp (-inz*) dz*. (30) 

We have now to determine x(t) with the condition 
x(to) = 0. This can be accomplished by the additional 
continuity equation at the boundary between the cen- 
tral nucleus and the boundary layer 

jpzidS’= - jgdl’. (31) 

We calculate equations (3 1) by considering the volume 
V, as illustrated in Fig. 1, formed by the upper (or 
lower) cyiindri~al part of the boundary layer. This 
choice is compulsory to obtain info~ation from the 
continuity equation not coincident with already 
known equations. We write 

where the surfaces of integration S, and .SH arc chosen 
as described in Fig. 1 and u, and u,~ are the vclocit> 
vectors at S, and S,,, respectively. Since the density it 
in Y is almost equal to p( r,) we have 

In scalar form and recalling that uz, = (1 we obtain 

I 
-P+dSt pu” dS = 0 

%! j s, 
(32) 

r 

-op(6,t)(R--6)‘?r+p(7;) 
! 

uB dS = 0. 1 

. (H J 

The integral in equations (31) may be calculated 
taking from the literature [S] the value of 14,~ ;IS 

where 1 is a function of yi6 and 

24,) = K, M’ ‘VGV’ Z(1+o.49Pr’ ‘) ’ z 

where K, is a proportionality constant. IC = h-z, v is 
the kinematic viscosity, C;r the Grashof number and 
Pr the Prandtl number. This formulation of Us is 
deduced for a laminar flow and by approximating the 
problem to a plane surface at constant Ts_ However, 
experiments indicate that the correct Gombination of 
Gr and Fr in free turbulent convection is 6’ ’ Pr ’ ’ 
[S], i.e. 

with 

&h”G*(hl’?) 
Gr”’ sz (----- --;- 

I’- 

The velocity u is given by 

(33) 

We observe that in equation (33) the ratio 
p(Ts)/p(S, t) N 1 to a very good approximation and. 
recalling that u = 2-1/n, we have 

.k = Cz[T(S.l)- T,]’ 3 (34) 

where 

2RApGd’ Pr ‘~-’ 
a = @~~>)“~G%-&j2)J 1 3 

and 

.X(&,) = 0. 

From equations (29) we calculate 

(35) 

(36) 
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T(6,t) = Ts + t tl, exp {in[x(r)+&/hJj 
n=-03 

or 

T(6, t)- Ts = G*~~(~)~/~+~], 

By substituting in equation (34) we obtain 

i = aG*‘f3[x(t)h/n+6] 

x(t,) = 0. (37) 

Equation (34) has the general solution (integral form) 

dy 
G*“3(yh/a+Q = a@--td* (38) 

The entire set of equations is now solved and can 
be applied to various practical and theoretical situ- 
ations by changing the boundary conditions and vary- 
ing the choice of G* at will. In the following section 
we report a solution which is asymptotic and in our 
opinion is important to clarify the physical meaning 
of a steep temperature gradient applied to a cylinder 
of fluid obeying our model. 

Once the solution of equation (38) x(t) is known, we 
observe that the hydrostatic pressure in the cylinder is 
given by the following formula (Appendix) : 

where P, is the hydrostatic pressure at z = 0. 

4. ASYMPTOTIC SOLUTfON 

We choose as the boundary function G*(z) = 
(&- T&&z) where e(z) is a double step function: 
0(2)=0 for -h<z<6, h-6<z<!~h; O(z)=1 
for6<zgh--S.Att=OthenucleusisatT=T,, 
and the boundary layer is at T = Ts_ 

The differential equations (37) become 

;i = a(T,-T,)‘13Brx(?)hln+6] 

x(&J = 0 

where 

2RApx Gr’/3 Pr- ‘I3 

a = h(R-6)2(T,-Ts)“3’ 

The solution of equation (40) is 

i 
a(To-Ts)‘~3(t-fO) 

for to c t 6 t, -I- 
n( 1 - 28/h) 

x(t) = 
a(T, - Ts)li3 

(1-26/h) 

for t > to + 
n( I- 26/h) 

a(To-Ts)“3’ 

(40) 

(41) 

or 

haf To - Ts)“3 - 
A 

for 
Z(l-26/h) 

to < t < to f - 
a(T, - T,) 1’3 

for 
E( 1-26/h) 

t > to + -------. 
a( To - T,) u3 

The temperature function is determined by cal- 
culating the a,, coefficients by means of equation (30) 

u,, = & 
s 

: (To-- T,)@(z*) exp (-inz*) dz* (42) 
lr 

where 

@(z*) = 1 for &z/h < z* 6 (1 -S/h)n 

and 

8(2*)=0 for-n<z+<n&/h 

and ~(1 -6/h) < z* Q ?E. 

From equation (41) 

tr, = (To- Ts) 

X 
i[(- I)n+ ’ exp (-innS/h) +exp (in&F/h)] 

2nn 
-. (43) 

As a consequence the temperature function is 

T(z, 2) = Ts + t GI, exp [in@(t) + nzih)] (44) 
I?=-co 

where u, are given by equation (43) and n(t) by equa- 
tions (41). 

Equation (44) is a step function which travels 
through the nucleus and is obviously a limiting case 
of conv~tion. The real case is obtained by replacing 
the 8(z) function with an appropriate smoothed step 
function which will be described in a forthcoming 
paper. 

5. CONCLUSIONS 

The equations presented here apply to a liquid con- 
tained in a cylindrical vessel, but, as we will show in 
another paper, a more general formulation for any 
form of the container is possible, provided that the 
appropriate geometrical and boundary layer func- 
tions are used. As far as the convective nucleus is 
concerned no cylinder thickness or height is required 
to provide a valid range to our equations. The only 
limit of this theory is in the approximations involved 
in the boundary layer equations, if the convective 
nucleus exists. 

As a consequence Acknowledgements---We are grateful to Prof. Andrea Levi 
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APPENDfX 

The f~damental equations of hydrodynamics are : 

1. 

2. 

3. 

4. 

5 _ 1 
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By choosing the z-axis as in Fig. I and putting 7‘ = T(:, /) 
and U = -o(t)& these equations become equations (1). (3). 

The Navier-Stokes equation gives, for the components x 
and y (with the sum rule convention and by numbering X, .I‘. 2 
as X,,S,.Xi) 

THEORIE GENERALE DU NOYAU CONVECTIF D’UN FLUfDE DANS DES 
CONDITIONS D’ETAT NON PERMANENT ET DE NON LINEARITE 

RBsum&-On dbveloppe un mod& de convection naturelle dans un cylindre de Auide soumis i des 
conditions limites gtnCriques. Le fluide est divisk en une rggion de couche limite et en un noyau se d&p&ant 
avec des vitesses oppost-es et les Bquatinns de Fourier, de continuiti: et de Navier-- Stokes dans b noyau 
sent risolues exactement en fonction des sommes de Fourier. Le noyau est couple i la couche limite pour 
fournir la fonction inconnue qui r&out comp~~tement ce probl6me de convection. Pour illustration, la 
solution gCnirale est appliqu6e au cas d’un echelon de tem&ature fequei se d&place sans diformation B 

travers le noyau (solution asymptotique). 

ALLG~~~~IN~ THEORIE EINES FLUIDEN KONV~~TIONSK~RNES UNTER 
INSTATION~R~N NIGHT-LIN~AR~N BEDINGUNG~N 

Zusammenfassung-Es wird ein Model1 der freien Konvektion in einem Pluidzylinder entwickelt. Das 
Fluid wird in ein Grenzschicbt-Gebiet und ein Kern-Gebiet unterteilt, welche sich mit entgegengerichteter 
Geschwindigkeit bewegen. Die Fourier-, Kontinuitits- und Navier-Stokes-Gleichungen fiir den Kern- 
bereich werden in Form Fourier-seher Summen exakt gel&t. Der Kern wird mit der Grenzschicht 
gekoppeit, was die unbekannte Funktion und damit die volist;dndige L&sung dieses Konvektions-Problems 
ergibt. Als Beispiel wird die allgemeine L&sung auf den Fall eines Temperaturs~3runges angewandt. wcbei 

sich ergibt, daD dieser unverlndert durch den Kern hindurcb iguft (asymptotische Liisung). 

~~T~Pa3pa6OT~a MOliejrb CSO6OiXEOti KOHBfXUEiU B ~~~~, 3a~OJ~HeHHOM ~U~O~~b~,~p~ 

npOwseonbebrXrpa~~lrHbrX yCnOBtWX. O~I&M, 3aHXTbIfi ~KanKocTbto,nOApa3AesKeTCK Ha o6miCTb ROF- 

paHumor cnon II Kgpo, ~BtixyWtecx c ~~OTBBO~OJIOXH~IMH CK~~OCTKMH; ypaenemfr @ypbe, Hepas- 

PMBHOCTH Ii HaBbdTOKCa iUlSl SUlpZi TOYHO peLUaloTCK C ItOMOlUbIO C~M~OBaHWl =IpMOHHK PRAa 

Qypbe. PeureHue ,qm aapa CBmbmeTU! c pemeHHeM an51 norpaauworo CnoR. B KawxTBe npaMepa 

~a~0 o6mee peIuee3ie 3anaw p,nr cnyvan cKa9Ka TeMnepaTypbI, KOTOpbIi(, KLXC OKa3amcb, He ki3MeEF 


